The first eigenvalue of the $$p-$$ p - Laplacian on quantum graphs
نویسندگان
چکیده
منابع مشابه
The p-median and p-center Problems on Bipartite Graphs
Let $G$ be a bipartite graph. In this paper we consider the two kind of location problems namely $p$-center and $p$-median problems on bipartite graphs. The $p$-center and $p$-median problems asks to find a subset of vertices of cardinality $p$, so that respectively the maximum and sum of the distances from this set to all other vertices in $G$ is minimized. For each case we present some proper...
متن کاملTHE OPTIMIZATION OF EIGENVALUE PROBLEMS INVOLVING THE p-LAPLACIAN
Given a bounded domain Ω ⊂ R and numbers p > 1, α ≥ 0, A ∈ [0, |Ω|], consider the following optimization problem: find a subset D ⊂ Ω, of measure A, for which the first eigenvalue of the operator −∆p + αχD φp with the Dirichlet boundary condition is as small as possible. We prove the existence of optimal solutions and study their qualitative properties. We also obtain the radial symmetry of opt...
متن کاملEIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS
In this article, we study eigenvalue problems with the p-Laplacian operator: −(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is singlewell with transition point a = πp/2, then the second Neumann eigenvalue is greater than or equal to the first Dirichlet eigenvalue; the equality holds if and only if q is constant. The same ...
متن کاملTHE EIGENVALUE PROBLEM FOR THE p-LAPLACIAN-LIKE EQUATIONS
We consider the eigenvalue problem for the following p-Laplacian-like equation: −div(a(|Du| p)|Du| p−2 Du) = λf (x, u) in Ω, u = 0 on ∂Ω, where Ω ⊂ R n is a bounded smooth domain. When λ is small enough, a multiplicity result for eigen-functions are obtained. Two examples from nonlinear quantized mechanics and capillary phenomena, respectively, are given for applications of the theorems.
متن کاملISOLATION AND SIMPLICITY FOR THE FIRST EIGENVALUE OF THE p-LAPLACIAN WITH A NONLINEAR BOUNDARY CONDITION
Here Ω is a bounded domain in RN with smooth boundary, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, and ∂/∂ν is the outer normal derivative. In the linear case, that is for p = 2, this eigenvalue problem is known as the Steklov problem (see [3]). Problems of the form (1.1) appear in a natural way when one considers the Sobolev trace inequality. In fact, the immersionW1,p(Ω) ↪→ Lp(∂Ω) is compact, he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Mathematical Physics
سال: 2016
ISSN: 1664-2368,1664-235X
DOI: 10.1007/s13324-016-0123-y